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Brillouin scattering spectroscopy of ferroelectric and
ferroelastic phase transitions

By H. Z. CumMINS
Ecole Normale Supérieure, Paris, France, and City College — C.U.N.Y., New York, U.S.A.

Light scattering spectroscopy has played a crucial role in the study of numerous
phase transitions and critical phenomena. In the case of structural phase transitions
in crystalline solids, high resolution Raman and Brillouin scattering experiments
have provided detailed information on the ‘soft modes’, the highly temperature-
dependent lattice vibrations whose frequencies fall towards zero at the transition
temperature. The condensation of the soft modes precipitates the spontaneous
symmetry breaking which inevitably accompanies these transitions.

Ferroelectrics comprise a particular class of crystals exhibiting structural phase
transitions which have been investigated extensively by light scattering techniques.
In addition to numerous soft mode studies, other subtle aspects of these transitions
have been investigated by light scattering, including mode interactions and central
peaks.

In this presentation, the fundamental aspects of structural phase transitions and
their relation to light scattering will be reviewed. A number of light scattering studies
of ferroelectric crystals spanning the past decade will be summarized and used to
illustrate the current level of understanding of these phenomena.
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1. INTRODUCGTION

Light scattering spectroscopy has been widely applied to the study of numerous phase tran-
sitions and critical phenomena during the past 15 years, including the liquid-vapour critical
point, hydrodynamic instabilities, liquid crystals and structural phase transitions in solids.
Most investigations of structural transitions in solids have focused on the study of soft optic
modes, which are usually observed as strongly temperature dependent features in the Raman
spectrum. It is the soft mode, whose frequency approaches zero at the transition, that condenses
in the low temperature phase, resulting in spontaneous symmetry breaking. Raman scattering

p
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experiments, often in conjunction with inelastic neutron scattering and X-ray studies, have

i provided considerable information on the dynamical aspects of structural phase transitions in
P a great number of crystals.

@) : In some crystals, a structural phase transition can also involve anomalous temperature
= dependence of acoustic modes, which can be conveniently studied by Brillouin scattering
E O spectroscopy with a Fabry-Perot interferometer. Such experiments can also provide consider-
— 8 able information on the dynamics of phase transitions, which is often complementary to

Raman scattering measurements.

Of the various structural phase transitions which have been studied by Brillouin scattering,
there are three classes of crystals that I will discuss. These are: (1) piezoelectric ferroelectrics,
such as potassium dihydrogen phosphate (KDP), (2) non-piezoelectric ferroelectrics such as
trigylcine phosphate (TGS), and (3) improper ferroelectrics such as gadolinium molybdate
(GMO). The primary goal of this discussion will be to show how the dynamical analysis applied
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394 H. Z. CUMMINS

in the past to classes (1) and (2) can be extended and applied to class (3), and to suggest ways
in which Brillouin scattering and ultrasonic studies of improper ferroelectrics might be com-
bined to further elucidate these dynamical properties. In particular, we will show that although
the thermodynamic analysis of the elastic constants previously employed for class 3 materials
predicts identical results for ultrasonic and Brillouin experiments, a dynamical analysis suggests
that there should be differences in the results related to the soft mode frequency or relaxation
rate.

2. THERMODYNAMICS

As a first step we review the standard method of analysing the equilibrium properties,
particularly the static elastic constants, of the three classes of crystals. We begin with a Landau—
Devonshire free energy expansion 4 (7, x) where 7 is the order parameter and x is a strain. For
ferroelectric crystals of type (1) or (2), 7 is the electric polarization P. For class (3), it is the
amplitude of the soft mode which is at the edge, rather than the centre, of the Brillouin zone.
In general » may have more than one component, and all the strains should be included,
leading to a rather complicated free energy expression. We will work with a simplified 4(7, x)
including only one strain and a single-component 5. More complete free energy expressions
can be found in the book by Jona & Shirane (1962) for classes 1 and 2, and in Dvorak (1971)
for class 3. The connection between Dvorak’s expression and a single-component form has
been discussed, for example, by Dorner et al. (1972). We take for our model free energy:

A(n, ) — 4y = Jan?+ 1B + by + ... +3Cx + ... — axy — BKap®, (1)

The first three terms in equation (1) are the usual Landau expression for the free energy
associated with the order parameter 7 at zero strain. With the additional assumption that

a = a(T-Tp), (2)

these three terms (which give the free energy of the clamped crystal) predict a first order
transition if # < 0 and a second order transition if # > 0. For second order transitions, the
transition occurs at Tj; below T, the equilibrium value of the order parameter increases as
(T, — T}, while the susceptibility (024/092)~! diverges as |Ty— T'|~! from both sides.

The fourth term in equation (1) is the leading (harmonic) term in the elastic energy. The
elastic constant C is taken at = 0. Finally, the last two terms in equation (1) represent the
lowest orders of coupling between the order parameter 5 and the strain x. For crystals in which
7 and x have the same wavevector and same symmetry (i.e., transform according to the same
irreducible representation of the crystal point group), the first term is allowed. This is the case
for our class (1), the piezoelectric ferroelectrics, where a is the linear piezoelectric constant.
For crystals where linear coupling is forbidden by symmetry, the lowest order coupling possible
is via the last term in equation (1). For the non-piezoelectric ferroelectrics, class (2), this
coupling represents electrostriction. For the improper ferroelectrics of class (3) it represents
anharmonic coupling of a zone centre acoustic mode to two zone edge soft modes. For all three
classes, the coupling produces a spontaneous elastic deformation in the low temperature phase
which led Aizu (1969) to introduce the term ‘ferroelastic’. Following him, we will henceforth
refer to the high temperature high symmetry phase as P (paraelectric or paraelastic) and the
low temperature phase as F (ferroelectric or ferroelastic). We will also restrict the discussion to
cases where # > 0 so that the transition is of second order.

[ 184 ]
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LIGHT SCATTERING AND PHASE TRANSITIONS 395

(a) Case 1

In the presence of linear coupling we neglect the last term in equation (1). Minimizing 4
by setting (04/0n) = (04/0x) = 0,

F, = (04/0y) = an+pn3+yn®—ax = 0, (3a)
X = (04/0x) = Cx—an = 0, (30)
where X is the stress and F, is the force conjugate to 7. Solving equations (3), one obtains
% = (a/C) 7o, (4)
moleo( T— T4) +Br3+ynd] = 0, (5)
f (®)

(ii)

C—

T,
T/K

Ficure 1. Temperature dependence of the static elastic constant C(0). (a) Case (1), linear coupling. (i) C(0) =
C—a*/(200(Ty—T) +a?/C); (i) C(0) = C—a?/(ay(T—T,)). (b) Cases (2) and (3), quadratic coupling.
(i) C(0) = C—K?/(23+4yng); (ii) C(0) = C.

where x, and 7, are the equilibrium values of the strain and order parameter and Ty = T+
a?/Ca,. Equation (5) shows that for 7' > T, 7, = 0 while for T < T, 72 =~ ag(To—T)/B.
Equation (4) shows that x, increases linearly with #5,. The major effect of the linear coupling
term is to shift the transition temperature from 7j (clamped Curie temperature) to T (free
Curie temperature), where 75— T}, is typically a few Centigrade degrees.

To find the elastic constant we start with the two minimization equations (3), and set
7 = 7y+07, ¥ = %y +8x. Multiplying out the results and keeping only linear terms in the small
deviations 87 and &x yields: S+ 383+ 5yn] — adx = 0. (6)
In the thermodynamic limit, the stress is assumed to change slowly enough so that 7 always
stays in equilibrium with x via equation (6). Then the stress produced by small strains is

given by X = (04/0x) = Cox—ady = [C—a?/(o+ 3/93+ 5yyl)] ox. (7)
The expression in square brackets in equation (7) is the static elastic constant C(0). Its

temperature dependence is illustrated schematically in figure 1 (a).

(b) Cases 2 and 3
Repeating the above analysis with the coupling represented by the last term in equation (1),
wefind %0 = (K/20) 1, (®)

oloto(T' = To) + (A —K?/2C) n§+yni] = 0. (9)
[ 185 ]
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396 H. Z. CUMMINS

Assuming that X is small enough that (§— K2/2C) > 0, the transition still occurs at 7;, below

which 7% ~ ay(To— T)/(f— (K?/2C)) while x, increases quadratically with 7, and hence

linearly with (7y— T'). The fact that a quadratic (electrostrictive) coupling term in the

Landau-Devonshire free energy would produce a spontaneous strain proportional to 73 was

first noted for the case of TGS by O’Brien & Litovitz (1964). Note that the coupling does not

modify the transition temperature 7, in this case, but leads instead to a modification of g.
The small deviation expansion for this case gives

Syloc+ 385+ 5yns— (K2/2C) n§] = Knydx, (10)
and finally,
_M s _ o= K2§ ]
X = G = Ove=Knobn = (O oy |
K2
— Cox(T > Ty) = [c-m] sx(T < Ty). (11)

The static elastic constant C(0) given by equation (11) is illustrated in figure 1 (). Note that
in this case there is no effect for 7' > T, while for 7" < Tj there is a nearly temperature
independent downward shift in C(0) relative to C.

Although the thermodynamic elastic constants of equations (7) and (11) are in qualitative
agreement with various ultrasonic and Brillouin scattering experiments, there are a number
of problems which arise when a detailed comparison with experiment is attempted:

(1) ultrasonics and Brillouin scattering are dynamic measurements. If the characteristic
frequency (or relaxation rate) of the soft mode is not very much higher than the acoustic
frequencies involved in the experiment, the thermodynamic predictions should not be expected
to apply;

(2) the above thermodynamic analysis predicts isothermal elastic constants, whereas Brillouin
scattering experiments measure adiabatic elastic constants. The necessary ‘adiabatic correction’
can be made to the analysis if appropriate thermodynamic parameters are available. For
example, for KDP, that adiabatic correction can increase the predicted elastic constant in the
ferroelectric phase within 1° of the transition by 50 9, or more (Brody & Cummins 1974);

(3) the thermodynamic analysis completely neglects fluctuations, but the discontinuous step
in C(0) for the quadratic coupling case, shown in figure 1(b), rests on the validity of equations
(9) and (10) in the F phase right into T = T;. At some point, however, the fluctuations in
7o will become comparable to 7, and the linearization procedure will break down leading to
some rounding of the step.

The consequences of higher order anharmonic coupling between the acoustic and soft
modes in renormalizing the elastic constants near T, were considered for quartz by Axe &
Shirane (1970) and discussed in relation to GMO by Héchli (1972).

3. DYNAMIC ANALYSIS

In order to proceed beyond the thermodynamic predictions of § 2, the acoustic mode and
soft modes must be treated as dynamical degrees of freedom. In § 3 (c) we will discuss a general
method for analysing light scattering from systems of coupled dynamical modes. First, however,
we will examine two approximate methods which provide useful physical insights into the
effects of mode interaction.

[ 186 ]
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LIGHT SCATTERING AND PHASE TRANSITIONS 397

(a) Coupled harmonic oscillators
Consider first the well known problem of two linearlycbupled undamped harmonic oscillators.
The Lagragian is
L =T~V = }M X3+ 1M, X3~ 3K, X1~ 1K, X5~ K1, X, X, (12)

The equations of motion derived from equation (12), together with the substitution X(¢) =
X exp (iwt) give:

Xi(0f— 0?) + X Kyp /My = 0, X,(Kyo/M,) +Xp(0F— 0?) = 0, (13)

(03— 0?) (-0} -k = 0, (14)

where £2 = K%,/ M, M,. The two roots of the secular equation (14) give the eigenfrequencies
of the coupled oscillators, w, and w_ :

0 = $o}+ 0}t {(0]- 0})?+ k2. (15)

The solutions to equation (15) are shown in figure 2. For the case where w; and o, represent
the soft mode and the acoustic mode respectively:

w? = w3(T-1T;), o} = constant. (16)

wf =03 (T=T)

w2

w2 =constant

N
N
|
\
Rl
|
Y

T/K

Ficure 2. Temperature dependence of the eigenfrequencies w  of two linearly coupled
simple harmonic oscillators (equation 15).

If w; > wyand (w}— w}) > £, equation (15) becomes

R ”
Wi & 0]+28/(0i-of) ~ o
0~ wi-2k%/ vl (18)

For crystals of class 1, the proper ferroelectrics, the piezoelectric coupling between the soft
mode and the acoustic mode is essentially independent of temperature, so that the approximate
result of equation (18) for w2 is seen to be of the same form as the thermodynamic prediction,
equation (7) for the elastic constant.
For the improper ferroelastics (classes 2 and 3) there is no linear coupling in the P phase.
However, in the F phase, there is an effective linear coupling of Ky, which, in the case of class 2
[ 187 ]
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398 H. Z. CUMMINS

materials like TGS, results in morphic linear piezoelectricity. The induced linear coupling is
produced by the spontaneous symmetry breaking and is thus proportional to the equilibrium
~value of the order parameter.

For class 3 materials the presence of induced linear coupling in the F phase seems paradoxical
at first glance, since in the P phase the soft mode lies at the boundary of the Brillouin zone so
that linear coupling to a zone centre acoustic phonon is forbidden by momentum conservation.
However, the condensation of the soft mode produces a multiplication of the size of the unit
cell which causes the soft mode to move to the centre of the Brillouin zone in the F phase.
Therefore, both class 2 and 3 materials in the F phase can be considered as examples of linearly
coupled oscillators which differ from class 1 only in that the coupling constant is strongly
temperature dependent.

The approximate coupled oscillator result (18) for this case then becomes (for the F phase)

0 ~ wi-2K23/ Wi (19)

Since both w} and 93 are very nearly proportional to (T,— T'), equation (19) predicts a con-
stant downward shift of w? in the F phase in agreement with the thermodynamic prediction
equation (11). However, this approximation is not valid unless w; > ®,.

For an improper ferroelastic exhibiting a second order transition, w, should become very
small as the transition is approached from below, and eventually there will be an additional
downward trend in w? due to the ‘level repulsion’ or ‘anticrossing’ effect. Since this additional
downward curvature is expected to occur in the temperature range where w, becomes com-
parable to w,, it will depend crucially on the frequency of the sound wave involved, and should
therefore cause a difference between the elastic constants determined from Brillouin scattering
or ultrasonic measurements.

(b) Method of O’Brien & Litovitz (1964)
If the soft mode is heavily overdamped, it can be considered as a purely relaxational mode
governed by a kinetic equation of the form

S o—m) =-T 2. (20)

Landau & Khalatnikov (1954) first noted that when equation (20) is combined with the Landau
free energy, the relaxation rate is

_ru

n o

—1

o« I'|T-T,|,

so that (assuming that I"is independent of T") the width of the soft mode should decrease linearly
with T'—Tj as the transition is approached: a manifestation of ‘critical slowing down.’
O’Brien & Litovitz (1964) showed how the complex frequency dependent sound velocity of
TGS can be deduced with the help of the kinetic equation (20).
Returning to the free énergy (1) for classes 2 and 3, we have the two thermodynamic forces

Xand F:
X =384/8x = Cx— }Kn?, (21)

F, =34/8n = an+fn®+yyp°— Kxy. (22)
[18871
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LIGHT SCATTERING AND PHASE TRANSITIONS 399

At equilibrium, X = F, = 0. For small departures from equilibrium,
38X = Cdx— Kb, (23)
OF, = 81(2fn§+ 4yns) — Knedx. (24)
We define the complex elastic constant C':
C = 8X/8x = C—Kny(dy/8x). (25)

If the relaxation time for order parameter fluctuations is so short that 4 always remains in
equilibrium with x, then F, = 0 even when X # 0, and from equation (24) we getdy/5x = K,/

(24%¢ + 4yn8), whence
- K3 K

C— ——
(2875 + 4ym}) 28 +4yn3’

which is simply the thermodynamic result of equation (11).

(26)

If the frequency w of the sound wave is not very small compared to 7-1, then # will not stay
in equilibrium with x and F, will not be zero.

Let dx(t) =dxexpi(wt—gq-r),
dy(t) = oy expi(wi—gq-r);
the kinetic equation (20) together with equation (24) for F, then gives
iwdy = — I'{89(2675 + 4y75) — Kno 8},

_ K"io
/% = SpT e+ Gof Ty i (27)
K2
o) = C g+ G T

which, in the limit w — 0, again recovers the thermodynamic result.

We rewrite equation (27) as

2 2 .
1+iwr

where 7 = [I'93(2/3 + 4yn3]~! is the relaxation time of the soft mode.

From equation (28), the sound velocity is

2 _ |72
pao) - VA=V

Trohe (29)

where V2 = C/p and V2 -V} = (Co,—Cy)/p = K2/p(2f+4yn3). Equation (29) predicts that
for fixed w, as T approaches 7; from below, the sound velocity will increase from Vj to V,
with an inflexion point at w7 = 1. Note that this is the same increase in V predicted by the
thermodynamic equation, but it occurs below (rather than at) 7j, and V(¢) is now a smooth
function of T rather than a step function.

The attenuation predicted by equation (28) is

_VE-VE or
2V3 1+ w?r?

(30)

If the relaxation time 7 of the soft mode is sufficiently long, then its temperature dependence
can be studied by noting, for each ultrasonic frequency w, the temperature at which Vincreases
[189 ]
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400 H. Z. CUMMINS

from ¥, to V, or at which attenuation is a maximum. Brillouin scattering experiments in
TGS were able to detect the velocity change predicted by equation (29) and thus explore
7(T). These experiments will be described in § 4 ().

(¢) General coupled mode formalism

The approximate analyses of 3 (a) and 3 () for undamped or highly overdamped soft modes
can only provide the frequencies of the coupled mode system. A more general approach which
predicts the entire light scattering spectrum I(w) will be described briefly in this section. The
details of the method as applied to KD*P (potassium di-deuterium phosphate) can be found
in Reese et al. (1973).

elastic constant/(101° dyn cm—2)
frequency, (w,/2m)/(10° Hz)

Tioesaptraesy

1219 1930 1221 1222]

1

7, 120 7, 130 140
temperature/K

Ficure 3. Temperature dependence of the elastic constant C%=° of KDP deduced from Brillouin
scattering and ultrasonic measurements (from Brody & Cummins (1968)).

(1) Starting with the Helmholtz free energy, equation (1), one constructs the Lagrangian
density for the coupled mode system and from it finds the coupled equations of motion.

(2) From these one finds the four susceptibilities X;gs Xy9> Xay a0d X, (there will be N2 such
susceptibilities if N coupled modes are included).

(3) With the help of the Wiener-Khintchine and fluctuation—dissipation theorems the
spectrum can be shown to be:

I(w) oc {kT/n(w)} Z B B;xii( ), (31)

where the B; are optical coupling constants (e.g. Pockel’s elasto-optic coefficients) and n(w) is
the Bose factor.
Equation (31) permits a detailed comparison between Brillouin scattering experiments and
[ 190 ]


http://rsta.royalsocietypublishing.org/

o \

p &

JA

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

o \

A \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

LIGHT SCATTERING AND PHASE TRANSITIONS 401

various models of the soft mode dynamics. When the frequencies of the two modes are com-
parable and there is considerable damping, the spectrum is rather complicated and cannot be
simply analysed in terms of a Brillouin shift and linewidth.

—0.2 0 0.2
frequency/cm—1

F1GurE 4. Brillouin spectra of KD*P at five different temperatures. AT= T'— T where T;=220.68 K. (2) AT =
T4.28 K, (b)) AT = 1424 K, (c) AT = 6.08K, (d) AT =435 K, (¢) AT = 0.98 K. (From Reese ¢t al.
(1973)-)

4. SURVEY OF EXPERIMENTS
(a) Class 1 materials

As an example of a class 1 material we consider potassium dihydrogen phosphate (KDP) and
its deuterated isomorph KD*P. The temperature dependence of the ay shear mode in KDP,
which is linearly coupled to the polarization P; via the piezoelectric constant agq is shown in
figure 3 from Brody (1968). The transition is actually slightly first order, although recent
experiments by Schmidt ef al. (1976) and Bastie ef al. (1978) indicate that it becomes second
order under hydrostatic stress of ca. 2 kbar.t

In the P phase, the frequency of the (overdamped) soft mode is much higher than that of the
acoustic modes seen in Brillouin scattering so that the elastic constant deduced from the Brillouin
data follows the thermodynamic prediction of equation (7) (Brody & Cummins 1968, 1974).

t 1 bar = 105 Pa.
[ 191 ]
28 Vol. 293. A
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402 H. Z. CUMMINS

For KD*P, however, the soft mode frequency is comparable to that of the acoustic mode and
the thermodynamic analysis is inadequate. A series of spectra of KD*P illustrating the com-
plicated lineshape produced by the interaction is shown in figure 4 from Reese ef al. (1973).
These spectra were successfully analysed with the coupled mode formalism described in
§3(c).

Note that although only the sy shear strain is linearly coupled to the polarization P, and is
thereby proportional to P, in the F phase, other strains can couple to P; quadratically via
electrostriction and can thus be proportional to P}. The predicted temperature dependence of
both xy and zz strains in the vicinity of the transition have recently been observed by Bastie
et al. (1978).

(a)

T 050 0.2

0302}
0.226} [
7 I 0.294}
g i i
3 0218 0.286}
0.278}
0.210} [
34 34

0.510
- 0.662}
g 0.508 !
= 0.660
< 0506 :

0.658f

T/°C T/°C

F1GURE 5. Brillouin spectrum and temperature dependence of the Brillouin shifts in TGS. () (010) plane, 6 = 90°;
(b) transverse, 0 = 90°; (c) transverse, § = 135°; (d) longitudinal, 6 = 90°; (¢) longitudinal, 6 = 135°.
(From Gammon (1967).)

(b) Class 2 materials

Triglycine sulphate (TGS)’ is an example of class 2 materials, the nonpiezoelectric ferro-
electrics. O’Brien & Litovitz (1964) first explored the temperature-dependent acoustic proper-
ties of TGS with ultrasonic techniques. Subsequently Gammon & Cummins (1966) and

[ 192 ]
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LIGHT SCATTERING AND PHASE TRANSITIONS 403

Gammon (1967) performed Brillouin scattering experiments which revealed the behaviour
predicted by the analysis of § 3 () with a rounded upward step occurring below the transition
atT, = 49 °C. '

Figure 5, from Gammon (1967), shows the temperature dependence of the Brillouin shifts
of longitudinal and transverse acoustic modes at scattering angles of 90° and 135°. Each curve
can be analysed by following equation (28) or (29), or else simply used to find one value of
7(T) since wr & 1 at the temperature where Av passes through the midpoint of the dispersion
curve. The resulting four points were found to agree well with the Landau-Khalatnikov
prediction with 7 = (2.940.3) x 10-11(T,— T)-1s. (31)
Note that both the upward (rounded) step in the velocity and the peak in the linewidth occur
at a temperature lower than the transition temperature, in marked contradiction to the thermo-
dynamic analysis.

(¢) Class 3 materials

We now turn to the materials whose properties we are primarily interested in investigating,
the improper ferroelectrics. In 1967, Borchardt & Bierstedt discovered that a group of rare
earth molybdates undergo ferroelectric phase transitions at or near 159 °C. Cross ¢t al. (1968)
found that the dielectric anomaly in gadolinium molybdate (GMO) disappears if the crystal
is mechanically clamped, suggesting that the polarization is not the true order parameter but
is instead an indirect result of the spontaneous strain induced by piezoelectric coupling.

Subsequently, several theoretical papers appeared, suggesting that the transition was as-
sociated with a doubly degenerate soft mode at the edge of the Brillouin zone in the P phase.
In 1972, Dorner et al. (1972) studied the neutron scattering spectrum of terbium molybdate
(TMO) and observed a soft mode which is doubly degenerate and lies at the M point of the
Brillouin zone for T > T = 159 °C. A summary of the earlier experimental and theoretical
work on these materials can be found in their paper.

For T > T, they found that the soft mode frequency exhibits the familiar temperature

dependence W = A(T—T)

with T, = 149 °Cand 4 = 0.0165 (meV)2/°C.

Their results also showed that the static antiferroelectric displacement resulting from the
condensation of the soft mode at the zone boundary constitutes the order parameter which
couples anharmonically to the shear strain u,,. Both the spontaneous strain u,, and the spon-
taneous polarization were found to be proportional to %2.

Since ferroelectricity in these crystals is thus a tertiary effect, it can, to first approximation,
be ignored and the acoustic properties can be discussed in terms of the simple free energy we
introduced in § 2. A more detailed analysis of the thermodynamics with additional terms kept
in the free energy is given in Dorner ef al. (1972) and in several of the references cited there.

Cross et al. (1968) showed that the elastic constant Cgs of GMO exhibits a strong anomaly in
the F phase but is almost constant in the P phase in marked contrast to ‘proper’ piezoelectric
ferroelectrics like KDP. Subsequently, other studies of the elastic properties of these crystals
appeared, in particular an ultrasonic study of GMO by Héchli (1972) and Brillouin scattering
measurements by Luspin & Hauret (1974) and Busch (1974).

In figure 6 we see the elastic constants and Brillouin linewidths in GMO found by Luspin &
Hauret (1974). Note that the step in the elastic constants as well as the maximum in the
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linewidth occurs at the transition temperature in marked constrast to the case of TGS discussed
in the preceding section. The elastic constants deduced from Brillouin scattering were also found
to be in good agreement with the ultrasonic results of Hochli (1972) who, furthermore, found no
dispersion in sound velocities between 10 and 70 MHz.

The absence of dispersion effects in GMO of the sort observed in TGS is probably due to the
fact that the transition is of first rather than second order. Indeed, the neutron scattering results
of Dorner et al. (1972) indicate that at the transition, the soft mode frequency is still about
3 cm~1, which is sufficiently high that the thermodynamic approximation is at least roughly
valid. However, other improper ferroelectrics may turn out to have transitions which are
closer to second order, making dispersion effects observable. Furthermore, it is possible that the
order of the transition may be modified by hydrostatic stress as in the cases of NH,Cl and KDP,
both of which become second order under moderate stress.
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Ficure 6. Results of Brillouin scattering measurements of GMO. (a) Temperature dependence of the elastic
constants. () Temperature dependence of the linewidth of longitudinal Brillouin components for directions
of propagation [100] (1), [010] (2) and [110] (3) (from Luspin & Hauret (1974).)

Finally, there is the problem of the rounding of the elastic constants observed in both the
F and P phases as can be seen in figure 6. Héchli (1972) has shown how this rounding effect
can be interpreted as anharmonic coupling between the acoustic mode and pairs of optic
modes, following the theoretical work of Pytte and Axe & Shirane (1970). In this analysis,
one must include the entire branch of modes containing the soft mode rather than only pairs
of isolated soft modes so that the predicted effects are not included in either the thermodynamic
theory or the simplified coupled mode theories we have discussed. The computational method
is very similar to that employed in the mode-mode coupling theories of Kawasaki and Kadanoff
and Swift where anomalous behaviour of long wavelength hydrodynamic modes is evaluated
by integrating over all pairs of intermediate states to which the mode can couple.

Although we have considered only a few particular examples of structural phase transitions
involving interactions with acoustic modes, many other cases have been studied and we mention
a few briefly. First, there are some crystals which undergo structural transitions in which strain
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is the actual order parameter; the best known example is NbySn. Recently Toledano et al.
(1976) has observed a soft acoustic shear mode in lanthanum pentaphosphate by Brillouin
scattering which may also be an example of strain as the order parameter. Second, there are
examples of coexisting ferroelectric and ferroelastic behaviour in which the two effects are
uncoupled, such as barium sodium nitrate (Toledano 1975). Finally, a very interesting tran-
sition was recently investigated by Sawada et al. (1977). Lithium ammonium tartarate resembles
KDP in that a zone centre polar optic mode, which condenses at the ferroelectric phase tran-
sition, is linearly coupled piezoelectrically to an acoustic mode so that spontaneous strain is
proportional to spontaneous polarization. In contrast to KDP, however, these authors find that
it is the strain that is the primary order parameter while the dielectric anomaly occurs as a con-
sequence of the coupling. The analysis proceeds very much in the spirit of our discussion of
class 1 materials, except that the role of polarization and strain are reversed.

I wish to thank the Ecole Normale Supérieure and the CNRS for their generous hospitality.

I am also happy to acknowledge a stimulating discussion about improper ferroelectrics with
J. C. Toledano of the CNET.

REFERENCES (Cummins)

Aizu, K. 1969 J. phys. Soc. Japan 27, 387-396.

Axe, J. D. & Shirane, G. 1970 Phys. Rev. B 1, 342-348.

Bastie, P., Vallade, M., Vettier, C. & Zeyen, C. M. E. 1978 Phys. Rev. (In the press.)
Brody, E. M. & Cummins, H. Z. 1968 Phys. Rev. Lett. 21, 1263-1266.

Brody, E. M. & Cummins, H. Z. 1974 Phys. Rev. B9, 179-196.

Busch, M. 1974 Thése, Université de Paris (Document de CNET no. PEC 190). Opt. Commun. 10, 273-276.
Cross, L. E., Fouskava, A. & Cummins, S. E. 1968 Phys. Rev. Lett. 21, 812-814.
Dorner, B., Axe, J. & Shirane, G. 1972 Phys. Rev. B 6, 1950-1968.

Dvorak, V. 1971 Phys. Status Solidi B 46, 763-772.

Gammon, R. W. & Cummins, H. Z. 1966 Phys. Rev. Lett. 17, 193-195.

Gammon, R. W. 1967 Ph.D. thesis, Johns Hopkins University, Baltimore, Maryland (unpublished).
Hochli, U. T. 1972 Phys. Rev. B 6, 1814-1823.

Jona, F. & Shirane, G. 1962 Ferroelectric crystals. Oxford: Pergamon Press.

Landau, L. D. & Khalatnikov, L. M. 1954 Dokl. Akad. Nauk SSSR 96, 469-475.
Luspin, Y. & Hauret, G. 1974 J. de Phys. Lett. 35, L193-195.

O’Brien, E. J. & Litovitz, T. A. 1964 J. appl. Phys. 35, 180-186.

Reese, R., Fritz, I. J. & Cummins, H. Z. 1973 Phys. Rev. B7, 4165-4185.

Sawada, A., Udagawa, M. & Nakamura, T. 1977 Phys. Rev. Lett. 39, 829-832.
Schmidt, V. H., Western, A. B. & Baker, A. G. 1976 Phys. Rev. Lett. 37, 839-842.
Toledano, J. C. 1975 Phys. Rev. B 12, 943-950.

Toledano, J. C., Errandonéa, G. & Jaguin, J. P. 1976 Solid St. Commun. 20, 905-907.

[ 195 ]


http://rsta.royalsocietypublishing.org/

